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As a further development of Painlev6's theory [1], the existence, continuability and uniqueness of right-hand solutions of the 
differential equations of dynamics, and, under certain additional conditions, of the equations of motion of holonomic mechanical 
systems with sliding friction [2] are considered. In classical mechanics, acceleration is essentially defined as the right-hand derivative 
of velocity (see [3, 4]). Hence the most meaningful definition of the "solution of a differential equation" in problems of the dynamics 
of mechanical systems with sliding friction is that using the concept of right derivative [5]. 

From the mathematical point of view, fight-hand solutions of the differential equations of motion for 
mechanical systems with sliding friction, in which the generalized friction forces are defined by Coulomb's 
law, must be considered in the problem of continuation to the right of local (classical) solutions, since 
generalized accelerations may experience discontinuities at points where the generalized velocities vanish 
(see [6]). Under special initial conditions, in which the friction forces at rest and in motion are the same, 
classical solutions may not exist at all, even locally. 

1. EQUATIONS OF DYNAMICS 

The equations of the dynamics of a mechanical system with sliding friction, may be written in terms 
of generalized coordinates q = ( q l , . . . ,  q~) as 

k 
Zasi(t,q)cli =Qrs°(t,q, Li, cl)+ g,(t,q, il)+QA(t,q, il), s ~ df o 
i=l 

k 
asi (t, q);~i = L (t, qS, 0)l N s (t, q, q, ;?)l sgn Qr o (t, q, q, ~) + gs (t, q, q) + Qs a (t, q, q), 

i=l 

s ~ ) f  \d¢ 0 

(1.1) 

k 
~aa(t,q)~! i = fs( t ,q  s ,O)lNs(t,q, i1,~l)lsgn~l s + gs(t,q, i l )+Q:(t ,q ,  il), s ~ (I ..... k.) \ A r 
i=1 

k 
~.asi(t,q)~t i = gs(t,q, ii)+Qsa(t,q, il), s= k. +1 ..... k 
i=1 

k whereA(t, q) = [aij(t, q)] 1 is the continuously differentiable, symmetric positive matrix of the coefficients 
of inertia, (2A(t, q, Cl), g(t, q, il) are continuous vector-valued functions representing the active forces, 
generalized gyroscopic and other forces and terms, Q~(t,  q, (t, it) are the generalized forces of friction 
at relative rest, as expressed by the formulae 

k 
QT°(t,q,q, cl)= Y.asi(t,q)cl i -[gs(t ,q,  il)+Qsa(t,q, il)]os_o 

i~ 

f~(t, qS, qS), s = 1 . . . . .  k., 1 ~< k. ~< k are the coefficients of friction (continuous functions), 
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INs (t, q, 4, q) I are the absolute values of the normal reactions (at the points of  contact of the bodies 
in friction), which are continuous together with their partial derivatives with respect to 4 in the domain 
{(t ,q,  q,4) :  I Ns(t, q, 4, 4) I*  0}, and 

.g = ./f(4)g{s ~ (1 ..... k,):q s = O} 

A 
3f o = 3qo(t,q, cl, i:l)={s ~ ~: lQT°( t ,q ,  cl, Cl)l<~ fs(t ,  qS,O)lNs(t,q,  cl,~l)l} 

If the inequality 

f~(t ,q s,O)13lNs(t,q,4,~l)lloOsl< asi(t,q) (1.2) 

holds for s e N(t/)k~f0(t, q, q, q) and (t, q, 4, q) in the domain of definition f~ x / ~  such that [Ns (t, q, 
tl, 4) [ ~ 0, then, as proved in [2], Eqs (1.1) are equivalent to the equations of motion of  a mechanical 
system with sliding friction as described in [2], i.e. the solutions of these systems, understood in some 
sense or another (the classical solutions or right-hand solutions), are identical. 

Let us introduce the following notation 

A TO 
3¢ l = 3¢l(t,q, il,~l)={s ~ Ar0:lQs (t,q,q,/~)l= f s ( t ,q  s,O)lNs(t,q,il,?l)l} 

and {A(t, q)} (k.) denotes the submatrix of A obtained by deleting the first k. rows and columns. Like 
A(t ,  q), [A(t, q)] (k.) is positive-definite and therefore non-singular (see [7]). Let [ffk.+i,k.+j]~ -k" denote 
the inverse of  [A'(t, q)] (k.). 

Solving the fourth group of equations (1.1) for 4 s, s = k. + 1 . . . . .  k, we rewrite (1.1) in an equivalent 
semi-explicit form 

0 '~ =0, sed¢  0 

~ls=a-i( t ,q)[ f~( t ,qS,O)lNs(t ,q ,  il,~l)lsgn r0 . . .  r0 ss Qs ( t , q , q , q ) - Q s  (t,q,q,/~)], s~Ar \Ar0  

~:! s = aS) (t, q ) t - f s  (t, q ' ,  0)1N s (t, q, i 1,/~)1 sgn 4 s ~ r0 . t  - ~ s  t , q, q, /t)], s~(1 ..... k,)XA r (1.3) 

k k, k 
~1 s = y~a~(t,q)[gi(t,q, i l )+Q~(t ,q ,  il) ] -  ~, ~, asi(t,q)aiv(t,q)~l v, s = k .  +l  .... .  k 

i=k,+l v=l i=k,+l 

2. T H E  S O L V A B I L I T Y  OF T H E  E Q U A T I O N S  OF D Y N A M I C S  F O R  
A C C E L E R A T I O N S  

Let  Fs(t, q, 4,  4) (s = 1 . . . .  , k) denote the righ. t-hand sides of Eqs (1.3). For s = k. + 1 , . . . ,  k, 
k . + l  k s the functions Fs do not depend on the variables 4 . . . . .  4 • We may therefore put 4 = Fs(t, q, q,  

1 k .  4 , . . . ,  4 ) for s = k. + 1 , . . . ,  k and, accordingly, transfer from the first three groups of equations 
1 k (1.3) to a new system of equations in 4 . . . . .  4 • As a result we obtain 

/~s=~(t,q,q,/~l ..... / ~ ,  Fk.+~ ..... Fk), s = l  ..... k. (2.1) 

Determining the implicitly defined functions ~ = Gs(t, q, q) (s = 1 , . . . ,  k.) from (2.1) (if they exist), 
we can obtain a vector-valued function 4 = G(t, q, 4) that satisfies (1.3) or, equivalently, (1.1), having 
put Gs = Fs(t, q, 4, G1 . . . .  , Gk.) for s = k. + 1 , . . . ,  k. Since Fs (s = k. + 1 , . . . ,  k) are jointly continuous 
in their arguments, the continuity properties of G(t, q, 4) will be determined by those of the functions 
Gs(t,q,  dl) (s = 1 . . . . .  k.). 

Let (to, q0, 40, 40) be a point such that INs(to, qo, qo, 40) I ~ 0 (s ~ ( 1 , . . . ,  k.)\(Ar0~_ 1)) and the system 
of equations (1.1) is satisfied. Then for any s e At1 = Arl(t0, q0, 40, 40) we have Qs~(t0, q0, tl0, 40) * 0. 
We define a set of indices 

A . 

N 2 = 3f2(t ,q,  il, G, to,qo,~lo,Clo)=(3fo(t,q,q,G) \ ~ l ( t , q ,  il, G))nNl( to,qo, i lo , i ( lo)  

and a set of directions in space 

F(t,q,4,/~) = {u ¢ R k :x~ = 0,s ~ 3q o \ -ffl; (2.2) 
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-sgnQr°(t ,q,  cl, gl)~) s >I 0, s e ~ ~ ( ~  \ ~0)} 

and we put F0 = F(t0, q0, q0, q0). For arbitrary 8 > 0, we put 
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s8 = s8 (/io)~(/~:"/i-/~oH< 8} 

D8 = D8 (to,qo,qo ) a={(t,q,q):to <~ t < 8 

IIq-qoll<8, IIq-qoll<8, q e F  o} 

where I1" II is some norm in the space R k. 
Consider the following system of inequalities at the point (to, qo, qo, qo), for all s • (1 . . . . .  k.)\(No~,K 0 

OlN, I.  & ( 01N, I ~ k la,vy,v-f~.~a,+ 2, /a , j - f , ' - ' - -~ ' :  A,-/ Y. ctjiaivl< a,.,.e.~v 
dq " j=k,+l~, " aq I " )i=k,+l k , ( n -  1) 

0, s = v ;  As f - sgnQr°( t ,q ,  il,~) s e d q \ ( N O \ ~ l )  
qtsv= 1, s ~ v ;  =~ .sgnq ~, s e ( l  ..... k . ) \ ~  

(23) 

if v = 1 , . . . ,  k., where esv is the identity of the appropriate dimension (so that the dimensions of the 
left- and right-hand sides of the inequality are the same) and n is the number of indices in NI when n 
> 2 (if n = 1, 2 or Na = ~, we put n = 2). Inequalities (2.3) will always be valid for sufficiently small 
coefficients of frictionfs and the off-diagonal elements asv (s, v = 1 . . . .  , k., s ¢ v) of A. 

If all the functions involved in the terms Fs on the right of (2.1) satisfy a Lipsehitz condition as functions 
of (q 1 , . . . ,  qk.), with the same constant 0 ~< L < 1, then, by continuity with respect to ( q l , . . ,  ~ ' )  the 
same will be true of the functions Fs themselves. Accordingly, one can show that the validity of 
inequalities (2.3) at the point (to, q0, q0, q0) is a sufficient condition for each function Fs on the right 

1 ,_.k° of (2.1), as a function of (q . . . .  4 ) (and for all the functions involved in.the terms Fs, as functions 
of (to, q0, q0, q0)), to be contractive relative to the norm II 4 II1 = maxl~i~k. 14' II in some neighbourhood 
of (to, qo, qo, 40) for any fixed (t, q, q) e Ds. Then, obviously, the vector-valued function F = (F1 . . . . .  , 
Fk°) will be contrao:ive as a function of (41 . . . .  , qk*), if the space R k* of values of that function is 
considered with a norm I1" IIa. Now, using the equality 40 = F(to, q0, q0, q0) and the principle of contractive 
mappings, we conclude that arbitrarily small numbers 80 > 0, 81 > 0 exist such that there is a unique 
function G(t, q, q), defined on D~ 0 with values in Sr~, that is a solution of Eqs (1.3). 

Thus, for (t, q, q, q) ~ Ds0 x Ssl Eqs (1.3) are equivalent to the equation 4 = G(t, q, (1). Moreover, 
the numbers 80 and 81 may be chosen so that 

r 0  t " "" sgnQr°(t,q, cl, gi) = sgnQ, (o,qo,qo,qo) (2.4) 

for all s e Nl(to, q0, qo, qo), (t, q, q, q) e D ~  x Ssr 
We will list a few Jimportant properties of G. 
1. G is continuous; at every point (t, q, q) • D~ o for which df2(t, q, q, G, to, qo, qo, 40) v ¢. 
2. At every point (t, q, q) e Dh  the function G has a finite number of limit values not exceeding 2 n, 

where n_is the number of elements in the set Nl(to, qo, qo, 40). 
3. If G is a limit value of G at the point (t, q, q) e Dso, different from G(t, q, q), then 3¢2 D / +  ~ 

(an index So ~ I + exists) and 

~IG'~ I< ~IG'~I (2.5) 
s e l -  s~! + 

where 

! + ! ÷ t . - -  L t  
= ( ,q,q,G)={sed~2:G ` 40,  sgnG', =Qr°(t,q,  il, G)} 

!- = l-( t ,q,  il ,~) ~-{se dq2:~, SO, sgnG, =-sgnQr°( t ,q ,  il,~)} 

and the left-hand side of (2.5) is put equal to zero if I -  = ¢. 
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The following proposition is a direct corollary of property 3. 

Proposition 2.1. For each point of discontinuity (t, q, q) e D~0 of G, a vector a ~ R k exists with the 
following properties. 

1. (a, G(t, q, q)) = (a, q) = 0; 
2. {a, ~) I> 0 for all ~ ~ F0; 
3. (a, CJ(t, q, q)) < 0 for all limit values ~J(t, q, q) of G at the point (t, q, q) that differ from G(t, q, q), 

where ( . , . )  is the scalar product. 
Indeed, if (t, q, q) is a point of discontinuity of G, it follows from the definition of the sets ~2 and F0 

and from inequalities (2.5) and (2.4) that these properties hold for the vector a whose components are 
-sgn Q~(to, q0, 40, q0) for s ~ df2(t, q, q,/1, G, to, q0, 40,/10), its other components being zero. 

3. A T H E O R E M  OF T H E  E X I S T E N C E  OF A S O L U T I O N  

Given a continuous function q: [to, x) ~ R ~, we introduce notation for the right derivative at time t 
[to,'O 

D+ q(t) a- lim l [ q ( t + A t ) - q ( t ) ]  
at-~+o At 

By a right-hand solution of the Cauchy problem 

it = G(t,q,il),q(t o) = q0,q(t0) = q0 (3.1) 

defined in [to, x), we mean a continuous right differentiable function (q(t), ~l(t)) satisfying the equations 

O+ q(t) = q(t), O+il(t) = G(t,q(t),il(t)) 

for all t ~ [to, x) (see [6]). 
Any right-hand solution is also a Carath6odory solution (in the usual sense; see, for example, [6, 8]). 

Theorem 3.1. Suppose that the assumptions of Section 1 concerning the continuity and differenti- 
ability of the functions in (1.1) hold and that a point (to, qo, 40, q0) satisfying system (1.1) exists at which 
INs I # 0, s e ( 1 , . . . ,  k.)\(dC0Ufl) and conditions (2.3) are satisfied. Then a number ~0 > 0 exists such 
that differential equations (1.1) are locally uniquely solvable for q and can be reduced to the form (3.1) 
for (t, q, q) e D~o (the Cauchy problem for these equations is formulated as in (3.1)), and a right-hand 
solution (q(t), ¢l(t)) of the Cauchy problem (3.1) in some interval [to, x), x > to exists which is a right- 
hand solution of the equations of dynamics (1.1); if conditions (1.2) are satisfied, it is also a right-hand 
solution of the equations of motion of a mechanical system with sliding friction. 

Proof. The assertion that Eqs (1.1) are solvable and can be reduced to the form of (3.1) was established 
in Section 2. To prove the existence of a right-hand solution of problem (3.1), we consider the differential 
inclusion 

~l~H(t,q,?l), q(to)=qo, q(t0)=q0, (3.2) 

where H(t, q, ¢1) is the convex hull of the limit value of G at the point (t, q, q), including the value 
G(t, q, (t). 

The existence of a local Carath6odory solution (q(t), q(t)) of problem (3.2) follows from [9, 
Theorem 1]. Now, using [8, p. 56, Theorem 1], we conclude that 

Cont q(t) c H(t,q(t),il(t)) (3.3) 

for all t e [to, x), where x > to is some number and Cont q(t) is the contingency of q(.) at the point t (at 
t = t0--the right contingency Cil(t)). Now, if (t, q(t), q(t)) is a point of continuity of G, then G(t, q(t), 
(l(t)) = H(t, q(t), gl(t)) and it therefore follows from (3.3) that 

Cont q(t) =/~(t) = G(t,q(t),it(t)) (3.4) 
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But if (t, q(t), q(t)) is a point of discontinuity of G then, by Proposition 2.1, all the limit values of G, 
distinct from the value of G at (t, q(t), Ll(t), are strictly separable from F 0 by a hyperplane L = {~ 
Rk: ( a, ~ ) = 0}. Since G(t, q(t), (1(0) ~ F~ Ll(t ) ~ Fo, (1(0 ~ L and (l(t + h) ~ F0 for small h > 0, it 
follows that H(t, q(tl~l(t)) tq F0 = G(t, q(t), (l(t)) and C+(l(t) C F0. We then deduce from (3.3) that 

T* cl(t) = D+ q(t) = G(t, q(t), q(t)) 

This equality, together with (3.4), completes the proof that a right-hand solution of problem (3.1) exists. 
By [2, Lemma 3.111, if (1.2) is valid, this solution will also be a (right-hand) solution of the equations 

of motion of mechanical systems with sliding friction as described in [2]. This completes the proof. 

4. C O N T I N U A B I L I T Y  OF R I G H T - H A N D  S O L U T I O N S  

The definitions of the continuation of a solution, a non-continuable solution and a right maximum 
interval of existence of a solution are understood in the usual sense (see, for example, [10]). 

We shall say that a right-hand solution (q~(-), qco(')) of problem (1.1), defined in [to, x) and not 
continuable to the right, tends to the boundary of a domain f~, if, for any compact set W C ~ ,  a time 
tw < to exists such that (t, qo~(t), (ho(t)) q~ Wfor  all t~ < t < to. Under these conditions, if (qo~('), qo~(')) 
is a continuation of some solution (q(.), q(.)) of  system (1.1), we shall say that (q(.), 4(')) is continuable 
to the boundary of f.l. 

Theorem 4.1. Suppose that the assumptions of Section 1 concerning the continuity and differentiability 
of the functions in (1..1) are valid, and that for all (t, q, q, q) • f~ x R ~ such that I Ns(t, q, q, ~) I * 0 we 
have inequalities analogous to (2.3) but with the right-hand side multiplied by a certain quantity L = 
L(t, q, q), 0 ~< L < 1. Then, at every point (t, q, tl) ~ fl, Eqs (1.1) are uniquely solvable for q (they can 
be reduced to the form (3.1)) and, for any initial data (t~ q~ Llo ) ~ s~ a- {t, q, q) ~ ~,  IN(t, q, LI, G) I 
0, s ~ Arl(t, q, q, G) }, a local right-hand solution of the Cauehy problem (1.1) exists. 

Indeed, considering F = F1, • • • ,  Fk., where F1, • . . ,  Fk. are the functions occurring on the right- 
hand sides of (2.1), let us apply the principle of contractive mappings with respect to the variables (~1, 
. . . .  /i k') for any fixed (t, q, q) e ft. It follows that Eqs (2.1) (and hence also (1.1)) are solvable for 
and this implies the 'validity of Proposition 2.1 for any (to, q0, q0) e s~. The existence of a local right- 
hand solution of Eqs (1.1) for initial data (to, q0, 40) ~ s~ is now proved as in Theorem 3.1. 

Henceforth, we shall assume that all the conditions of Theorem 4.1 are satisfied, and consider only 
right-hand solutions (q(.), 4(')) of problem (1.1) such that (t, q(t), LI) ~ s~ for all t in the domain of 
existence of that solution. 

Theorem 4.2. Every right-hand solution (q(-), q(-)) of the system of differential equations (1.1) is either 
continuable to the boundary of the set f~ or a limit of the mapping t ---> (t, q(t), Ll(t)) as t ---> to - 0 exists, 
equal to (to, q.q.) ~ s~. 

Proof. The fact that (q(.), q(.)) is continuable to the right maximum interval of existence is established 
by standard arguments, using Zorn's lemma. If (q(-), q(.)) does not tend to the boundary of f~, then, 
using the fact that G is locally bounded, it can be shown that a limit of  the mapping t ---> (t, q(t), q(t)) 
as t ---> to - 0 exists which dearly cannot belong to the set s~. This implies the assertion of the theorem. 

5. POINTS OF R I G H T  U N I Q U E N E S S  

A right-hand solution (q(.), q(.)) of system (1.1) is said to be R-right-hand at a point t if the right 
derivative D+q(.) is fight continuous at t. 

Under the assumptions of Theorem 4.1, R-right-hand solutions have the following property. A solution 
of system (1.1) that i,'; R-right-hand at a point to is R-right-hand at every point of some interval [to, x), 
x > 0. Hence we may view Theorem 3.1 as an existence theorem for local R-right-hand solutions. 

The definition of fight uniqueness may be found in [8]. 

Theorem 5.1. Suppose that a point (t 0, q0, tl0, 40) at which inequalities (2.3) hold, INs(t0, q0, 40, q0 I 
0 for s • (1, . . . ,  k.)~dfo(to, q0, 40, q0) and Arl(t0, q0, q0, 40) =a ~' satisfies system (1.1). Suppose that in 
some neighbourhood of the point (to, q0, q0) the functions Qs, gs, f~ are continuously differentiable with 
respect to (q, q), and in some neighbourhood of the point (to, q0, q0, 40) the functions INs I are continuously 



842 V.M. Matrosov and I. A. Finogenko 

differentiable with respect to (q, q, 4) (for every fixed t). Then any R-right-hand solution at to of problem 
(1.1) with initial data q(to) = qo, q(to) = 4o is right unique at that point. 

Proof. Since Xl(to, qo, q0, 40) = O, it follows that a solution that is R-right-hand at t o locally satisfies 
(1.3) with fixed structure of the right-hand side generated by the point (to, qo, q0, q0). Let Fs ° 
(s = 1 , . . . ,  k) denote the functions, defined in a neighbourhood of (to, q0, q0, q0). through which this 
structure is expressed. It follows from inequalities (2.3) that the equation ~ = b"(t, q, 4, q) is 
solvable and gives a unique function G(t, q, 4). By our assumptions, the function F ° is continuously 
differentiable with respect to (q q, q). Then G o will be continuously differentiable with respect to 
(q, q) for every fixed t in some neighbourhood of the point (to, qo, q0), and every R-right-hand solution 
of system (1.1) with initial data q(to) = qo q(to) = q0 will locally satisfy the equation 

Cl = G° (t,q,il) (5.1) 

By standard methods of the theory of ordinary differential equations it can now be shown that to is a 
point of right uniqueness of the solution of problem (5.1), thus proving the theorem. 

It should be noted that R-right-hand solutions possessing the uniqueness property correspond to the 
intuitive meaning of the motion of a mechanical system with sliding friction. 

6. E X A M P L E  

Consider a two-dimensional system of two rigid bodies: (1) a piston B of mass m 1 moving with sliding friction 
in a rectangular tube Ox inclined at an angle ct = const (0 ~ c~ ~< ~2)  to the horizontal, and considered as a material 
point whose coordinate x is taken as ql; (2) an absolutely rigid body of mass m 2 rotating with friction about a 
cylindrical hinge, mounted on the piston with its centre of mass C a distance r from the piston, and with moment 
of inertia Jc relative to the centre of mass. The resistance of the medium is ignored. The inclination ~ of BC to the 
downward normal to Ox is taken as q2; f l  and f2 are, respectively, the coefficient of sliding friction of the piston 
and the friction coefficient in the hinge; m = ml + m2. 

The equations of motion of the system, in Lagrangian form, may be written as follows: 

a +/3 

m2 

Z 

Fig. 1. 



R i g h t - h a n d  so lu t ions  o f  t he  d i f fe ren t i a l  e q u a t i o n s  o f  d y n a m i c s  843 

nff + m2r cos[$ ~ = m2r ~ 2 sin 1~- mgsina + Q~ (6.1) 

m2r cosl~ £ + J ~  = -m2gr sin(ct + [3) + Q~" 

or  F r r~r_ M, J = Jc + mz~. The generalized friction forces at relative equilibrium with respect  to x and where ~1~ ~ ~ 2  -- 
I! may be written as foUows: 

QTO ~= m2 r ~ cos [~- m2r [~2 sin I~ + m g  sin a (x = O, 5/= O) 

Q~°a=m2rJicos[i+m2gr sin(ot+[3) ([~=0, ~ = 0 )  

The  absolute values of  the normal  reactions, defined according to the rule described in [2], are 

I N I I=lm 2 r(~ sin'~ + ~ cos 13) + mg cos al 

IN21= m21(Ji +r~2 cos[~-r~2 sin[l+ gsina)2 +(r~sin~+r~2 cos~+ gcosa)2 ]~ 

In the general case, the generalized friction forces are determined by the following equalities, s = 1, 2 

[Qs r0 ,  if qS = 0 ,  IQsr°l~< fslNsl ..... 

Qrs =t fs INslsgnQr° ,  if ilS=O, lQrs°l> f s l N s I j -  2 

[ - J s I N ,  I s g n o ' ,  if ,q '  * 0  

Inequality (1.2) holds for  s = 1, because I N11 is independent  of~  = 41. I f s  = 2, then, differentiating I N21 with 
respect to 1~'" (provided that  I N21 * 0), we find that a sufficient condition for (1.2) to be valid is that 

f2m2r(Icos ~1 + Isin 131) < J (6.2) 

Since max¢(I cos fl I + [ sin 15 I) = ~/2, it follows f rom (6,2) that 

f2 < J / ( ' ~ m 2  r)  (6.3) 

In particular, if Jc = 0 (i.e. if the body is replaced by a point of  mass m2), then f2 < r/~/2. It  is also obvious that 
inequalities (6.2) and (6.3) are valid if f2 = 0. 

The  following conditions are sufficient for  inequalities (2.3) to hold for  Eqs (6.1) 

m2r(Icos[~l+/~ Isin[~l) < mel2 1 2 

m2 ( rlcos~l+ f2 ) < Je21 / 2 (6.4) 

m2rf  2 (Icosl~l+lsin ~1) < Je22 1 2 

(el2 = IM, e21 = lu  - I ,  e22 = 1) 

Clearly, the third inequality of  (6.4) implies (6.2). Consider the set s~ = {(q, q):l Ns(q, q, G) I ;~ O, s ~ ,~l(q,  q, 
G)L 

1. Let  d¢1( q, #, G)  = {1, 2}. Then  I Q ~  I = f~'] N, I, q '  = 0, ~ ffi 0 (s = 1, 2), and the condition IN21 = 0 implies 
g ffi 0 or  m2 ffi 0, which is impossible. Hence  it  is alw.ays t rue tha t  (q, q) ~ sd if,If 1 = {1, 2}. 

2. Let  3fl(q, q, G)  ---- {2}. Then  I Q ~  I = f21 N2 l, q2 _- 0, t] z = 0 and the condition I N21 ffi 0 means  that 

. / cos l~+gs in(a+13)=0,  J / + g s i n a = 0 ,  g c o s a = 0  (6.5) 

The  third equality of  (6.5) gives tz = ~/2, and it then follows from the second equality of  (6.5) that  ~ = --g. 
" 0 Since I N1 l[~ •0. [~ffi0, affir,/2 = , I Q1 I[i •0, [t=0, afr,/2 > 0, it follows that ~ = -g  satisfies Eqs .(6.1) (and, obviously, 

the first equality of  (6.5)). Consequently, if ct = rd2 and Eqs (6.1) are uniquely solvable for ~, ~ (which is guaranteed 
by inequalities (6.4)), the only points not contained in A are pairs (q, t)) such that ~ = [~ = 0. 

3. Let  Arl(q, q, G)  = {1}. Then tl 1 = 0, t] 1 = 0, [ Q ~  I = f l  [ N1 I and the condition I N11 = 0 implies that 

~cosl~-[~ 2 sinl5 + ~ s i n a  = O, [~sinlS+l~ 2 cosl3+~cosct = 0 (6.6) 

(~ = mg/(mzr). Then  I Nzl = gml.  
Let  8-- 0. Then  [~, 0 and, provided that cos [~ = 0 and sin 13 = 0, it follows from (6.6) and (6.1) that  sin ~ = 0 

or  cos a = 0, respectively, and 
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Jm/(m2r ) = m2r -f2ml (6.7) 

Hence it follows that 

Jc 1 = _ r + m 2 r _ f 2 m l  <0 
m2r m m 

which is impossible. If cos 13 * O, sin 13 ~ O, it follows from (6.6) that 

= -~sin ot / cos 1~ = -~costx / sin [~ 

Consequently, cos (t~ + 13) = 0. Simple calculations show that in this case also (6.7) holds, and so the set M does 
not contain (q, q) ifq I = 0, qZ = 0, ova = {1}. 

If ~ ~ 0, then the values of q2 = 13, ~ = I~, for which (q, q) e s~ are found from the equations 

RJ -! cosl3- ~ 2 sinl3 = -~sinct, RJ -I sinl3+ ~ 2 cosl3 = - g c o s a  (6.8) 

(R = -m2grsin(o~ + ~1)- f2mlgsgn 6) 

Let [3 and ~satisfy Eqs (6.8). Elementary algebra leads from (6.8) to the equalities 

~sin(~+13) = RJ -I cos(~+13), RJ -I =-2~sin(~t+13), I~ 2 =-~cos(Qt+13) 

whence we obtain R = 0, sin(a + 13) = 0. Then f2 = 0 and cos (~ + 13) = -1. Consequently, the quantities 

6 2 

are solutions of Eqs (6.8) and it is necessary that f2 = 0. 
Combining the discussions of cases 1-3, we conclude that if Eqs (6.1) are uniquely solvable for t~, then the only 

states not contained in A are (q, tl) such that 
I. Qt = x/2,,q2 = l~= 0 2 
2.f2 o,q~ =~c=O,q = ~ = r c - o ~ , q 2 = ~ =  ± ~[~. 
Thus, if 0 ~< ot < rd2,f2 > 0 and inequalities (6.4) hold, then, by Theorem 4.1, a right-hand solution of Eqs (6.1) 

exists for any initial data x0, xa, 130, ~0- 
In conclusion, we note that Eqs (6.1) reduce to Painlevt's example ([1], see also [4]) if tt = 0,f2 = 0, ml = m2 

= 1 and the body is replaced by a point B. In that case inequality (2.3) will hold if 

j~ < (1 + sin 2 ~)/Isin ~cos ~1 

which agrees with the condition for the resolution of the Painlev6 paradoxes associated with "impossibility of non- 
uniqueness of motions". We have (q, tl) $ M i f ~  = x = 0, q2 = 13 = n, q2 = i~ = ±~l(2g/r). 

This research was carried out  with support  f rom the Russian Foundat ion  for  Basic Research  (93-01- 
16295). 
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